Tuesday, 13 March 2018

3 أشهر المتوسط المتحرك المتوقع


متحرك متوسط ​​التنبؤ التنبؤ. كما قد تخمن أننا نبحث في بعض من أكثر الأساليب بدائية للتنبؤ. ولكن نأمل أن تكون هذه مقدمة مفيدة على الأقل لبعض قضايا الحوسبة المتعلقة بتنفيذ التنبؤات في جداول البيانات. في هذا السياق سوف نستمر من خلال البدء في البداية والبدء في العمل مع توقعات المتوسط ​​المتحرك. نقل متوسط ​​التوقعات. الجميع على دراية بتحرك توقعات المتوسط ​​بغض النظر عما إذا كانوا يعتقدون أنهم. جميع طلاب الجامعات القيام بها في كل وقت. فكر في درجاتك االختبارية في الدورة التي ستحصل فيها على أربعة اختبارات خالل الفصل الدراسي. لنفترض أنك حصلت على 85 في الاختبار الأول. ما الذي يمكن أن تتنبأ به لنتيجة الاختبار الثانية ما رأيك بأن معلمك سوف يتنبأ بنتيجة الاختبار التالية ما رأيك في أن أصدقائك قد يتنبأون بنتيجة الاختبار التالية ما رأيك في توقع والديك لنتيجة الاختبار التالية بغض النظر عن كل بلابينغ كنت قد تفعل لأصدقائك وأولياء الأمور، هم ومعلمك من المرجح جدا أن نتوقع منك الحصول على شيء في مجال 85 كنت حصلت للتو. حسنا، الآن دعونا نفترض أنه على الرغم من الترويج الذاتي الخاص بك إلى أصدقائك، وكنت أكثر من تقدير نفسك والشكل يمكنك دراسة أقل للاختبار الثاني وحتى تحصل على 73. الآن ما هي جميع المعنيين وغير مدرك الذهاب إلى توقع أن تحصل على الاختبار الثالث هناك نهجان محتملان جدا بالنسبة لهم لتطوير تقدير بغض النظر عما إذا كانوا سوف تقاسمها معك. قد يقولون لأنفسهم، هذا الرجل هو دائما تهب الدخان حول ذكائه. هيس الذهاب للحصول على آخر 73 إذا هيس محظوظا. ربما كان الوالدان يحاولان أن يكونا أكثر داعما ويقولان: كوتيل، حتى الآن حصلت على 85 و 73، لذلك ربما يجب أن تحصل على حوالي (85 73) 2 79. أنا لا أعرف، ربما لو كنت أقل من الحفلات و ويرنت يهزان في كل مكان في جميع أنحاء المكان، وإذا كنت بدأت تفعل الكثير من الدراسة يمكنك الحصول على أعلى score. quot كل من هذه التقديرات تتحرك في الواقع متوسط ​​التوقعات. الأول يستخدم فقط أحدث درجاتك للتنبؤ بأدائك المستقبلي. وهذا ما يطلق عليه توقعات المتوسط ​​المتحرك باستخدام فترة واحدة من البيانات. والثاني هو أيضا متوسط ​​التوقعات المتحركة ولكن باستخدام فترتين من البيانات. دعونا نفترض أن كل هؤلاء الناس خرق على العقل العظيم لديك نوع من سكران قبالة لكم وتقرر أن تفعل بشكل جيد على الاختبار الثالث لأسباب خاصة بك ووضع درجة أعلى أمام كوتاليسكوت الخاص بك. كنت تأخذ الاختبار ودرجاتك هو في الواقع 89 الجميع، بما في ذلك نفسك، وأعجب. حتى الآن لديك الاختبار النهائي للفصل الدراسي القادمة وكالمعتاد كنت تشعر بالحاجة إلى غواد الجميع في جعل توقعاتهم حول كيف ستفعل على الاختبار الأخير. حسنا، نأمل أن ترى هذا النمط. الآن، ونأمل أن تتمكن من رؤية هذا النمط. ما الذي تعتقده هو صافرة الأكثر دقة بينما نعمل. الآن نعود إلى شركة التنظيف الجديدة التي بدأتها شقيقة نصف استدارة دعا صافرة بينما نعمل. لديك بعض بيانات المبيعات السابقة التي يمثلها القسم التالي من جدول بيانات. نعرض البيانات لأول مرة لتوقعات المتوسط ​​المتحرك لمدة ثلاث سنوات. يجب أن يكون إدخال الخلية C6 الآن يمكنك نسخ صيغة الخلية هذه إلى الخلايا الأخرى من C7 إلى C11. لاحظ كيف يتحرك المتوسط ​​على أحدث البيانات التاريخية ولكنه يستخدم بالضبط ثلاث فترات أحدث متاحة لكل تنبؤ. يجب أن تلاحظ أيضا أننا لسنا بحاجة حقا لجعل التنبؤات للفترات الماضية من أجل تطوير أحدث توقعاتنا. وهذا يختلف بالتأكيد عن نموذج التجانس الأسي. وشملت إيف التنبؤات كوتاباستكوت لأننا سوف استخدامها في صفحة الويب التالية لقياس صحة التنبؤ. الآن أريد أن أعرض النتائج المماثلة لمتوسطين توقعات المتوسط ​​المتحرك. يجب أن يكون إدخال الخلية C5 الآن يمكنك نسخ صيغة الخلية هذه إلى الخلايا الأخرى من C6 إلى C11. لاحظ كيف الآن فقط اثنين من أحدث القطع من البيانات التاريخية تستخدم لكل التنبؤ. مرة أخرى لقد قمت بتضمين التنبؤات اقتباسا لأغراض التوضيح واستخدامها لاحقا في التحقق من صحة التوقعات. بعض الأمور الأخرى التي من الأهمية أن تلاحظ. وبالنسبة للمتوسط ​​المتحرك للمتوسط ​​m، لا يتوقع إلا أن تستخدم معظم قيم المعطيات الأخيرة لجعل التنبؤ. لا شيء آخر ضروري. وبالنسبة للتنبؤ المتوسط ​​المتحرك للمتوسط ​​m، عند التنبؤ بالتنبؤات، لاحظ أن التنبؤ الأول يحدث في الفترة m 1. وستكون هاتان المسألتان مهمتين جدا عند تطوير الشفرة. تطوير المتوسط ​​المتحرك المتحرك. الآن نحن بحاجة إلى تطوير رمز لتوقعات المتوسط ​​المتحرك التي يمكن استخدامها أكثر مرونة. تتبع التعليمات البرمجية. لاحظ أن المدخلات هي لعدد الفترات التي تريد استخدامها في التوقعات ومصفوفة القيم التاريخية. يمكنك تخزينه في أي المصنف الذي تريده. وظيفة موفينغافيراج (تاريخي، نومبروفريودس) كما واحد إعلان وتهيئة المتغيرات ديم البند كما متغير عداد خافت كما عدد صحيح تراكم خافت كما أحادي ديم تاريخي الحجم كما عدد صحيح تهيئة المتغيرات عداد 1 تراكم 0 تحديد حجم الصفيف التاريخي تاريخ سيز التاريخية. الكونت كونتر 1 إلى نومبروفريودس تجميع العدد المناسب من أحدث القيم التي تمت ملاحظتها سابقا تراكم تراكم تاريخي (تاريخي - عدد نومبريوفريودس عداد) موفينغافيراج تراكوم نومبروفريودس سيتم شرح التعليمات البرمجية في الصف. تريد وضع الدالة على جدول البيانات بحيث تظهر نتيجة الحساب حيث تريد أن تكون التالية. أور-نوتس عبارة عن سلسلة من الملاحظات التمهيدية حول الموضوعات التي تقع تحت عنوان واسع من مجال بحوث العمليات (أور) . كانوا يستخدمون أصلا من قبل لي في تمهيدية أو بالطبع أعطي في كلية إمبريال. وهي متاحة الآن للاستخدام من قبل أي طالب والمعلمين المهتمين في أو تخضع للشروط التالية. يمكن العثور على قائمة كاملة بالموضوعات المتوفرة في أور-نوتس هنا. أمثلة للتنبؤ التنبؤ مثال عام 1996 امتحان أوغ ويظهر الطلب على منتج في كل من الأشهر الخمسة الماضية أدناه. استخدام المتوسط ​​المتحرك لمدة شهرين لتوليد توقعات للطلب في الشهر 6. تطبيق تمهيد الأسي مع ثابت تمهيد من 0.9 لتوليد توقعات للطلب على الطلب في الشهر 6. أي من هذين التنبؤين تفضل ولماذا تتحرك الشهرين متوسط ​​لشهرين إلى خمسة تعطى من قبل: التوقعات للشهر السادس هو مجرد المتوسط ​​المتحرك للشهر قبل ذلك أي المتوسط ​​المتحرك للشهر 5 م 5 2350. تطبيق تمهيد الأسي مع ثابت تمهيد من 0.9 نحصل على: كما كان من قبل فإن توقعات الشهر السادس هي مجرد المتوسط ​​للشهر 5 M 5 2386 لمقارنة التوقعين نحسب متوسط ​​الانحراف التربيعي (مسد). إذا قمنا بذلك نجد أنه بالنسبة للمتوسط ​​المتحرك مسد (15 - 19) sup2 (18 - 23) sup2 (21 - 24) sup23 16.67 وبالنسبة للمتوسط ​​الملمس أضعافا مع ثابت التمهيد 0.9 مسد (13-17) sup2 (16.60 - 19) sup2 (18.76 - 23) sup2 (22.58 - 24) sup24 10.44 وبشكل عام نرى أن التمهيد الأسي يبدو أنه يعطي أفضل التوقعات قبل شهر واحد حيث أن لديه مسد أقل. وبالتالي نحن نفضل توقعات 2386 التي تم إنتاجها من قبل التمهيد الأسي. التنبؤ مثال 1994 امتحان أوغ ويبين الجدول أدناه الطلب على ما بعد البيع الجديد في متجر لكل من الأشهر ال 7 الماضية. احسب المتوسط ​​المتحرك لمدة شهرين لمدة شهرين إلى سبعة. ماذا سيكون توقعاتك للطلب في الشهر الثامن تطبيق التمهيد الأسي مع ثابت التمهيد من 0.1 لاستخلاص توقعات للطلب في الشهر الثامن. أي من التنبؤين في الشهر الثامن تفضلون ولماذا يعتقد حارس متجر أن العملاء يتحولون إلى هذا الجديد بعد البيع من العلامات التجارية الأخرى. ناقش كيف يمكنك نموذج سلوك التحويل هذا وبيان البيانات التي ستحتاجها لتأكيد ما إذا كان هذا التحويل يحدث أم لا. ويعطى المتوسط ​​المتحرك لشهرين إلى سبعة أشهر من قبل: التوقعات لشهر الثامن هو مجرد المتوسط ​​المتحرك للشهر قبل ذلك أي المتوسط ​​المتحرك لشهر 7 م 7 46. تطبيق تمهيد الأسي مع ثابت تمهيد من 0.1 نحن الحصول على: كما هو الحال قبل توقعات الشهر الثامن هو مجرد المتوسط ​​للشهر 7 M 7 31.11 31 (كما أننا لا يمكن أن يكون الطلب كسور). لمقارنة اثنين من التوقعات نحسب متوسط ​​الانحراف التربيعي (مسد). إذا قمنا بذلك نجد أنه بالنسبة للمتوسط ​​المتحرك والمتوسط ​​السلس المتوسط ​​مع ثابت التمهيد 0.1 بشكل عام فإننا نرى أن المتوسط ​​المتحرك لشهرين يبدو أنه يعطي أفضل التوقعات قبل شهر واحد حيث أن لديه مسد أقل. وبالتالي فإننا نفضل توقعات 46 التي تم إنتاجها من قبل المتوسط ​​المتحرك لمدة شهرين. لفحص التحول سنحتاج إلى استخدام نموذج عملية ماركوف، حيث الدول العلامات التجارية، ونحن بحاجة إلى معلومات الحالة الأولية واحتمالات التحول العملاء (من الدراسات الاستقصائية). نحن بحاجة إلى تشغيل النموذج على البيانات التاريخية لمعرفة ما إذا كان لدينا تناسب بين النموذج والسلوك التاريخي. التنبؤ مثال 1992 امتحان أوغ ويبين الجدول أدناه الطلب على علامة تجارية معينة من الحلاقة في متجر لكل من الأشهر التسعة الماضية. احسب المتوسط ​​المتحرك لمدة ثلاثة أشهر للأشهر من 3 إلى 9. ما هي توقعاتك للطلب في الشهر العاشر تطبيق التجانس الأسي مع ثابت التمهيد 0.3 لاستخلاص توقعات للطلب في الشهر العاشر. أي من التنبؤين للشهر العشر تفضلون ولماذا يعطى المتوسط ​​المتحرك لمدة ثلاثة أشهر للأشهر 3 إلى 9 من خلال: التوقعات لشهر 10 هي مجرد المتوسط ​​المتحرك للشهر قبل ذلك أي المتوسط ​​المتحرك لشهر 9 م 9 20-33. وبالتالي (كما أننا لا يمكن أن يكون الطلب كسور) توقعات الشهر 10 هو 20. تطبيق التمهيد الأسي مع ثابت تمهيد من 0.3 نحصل على: كما كان قبل توقعات لشهر 10 هو مجرد متوسط ​​للشهر 9 M 9 18.57 19 (كما نحن لا يمكن أن يكون الطلب كسور). لمقارنة اثنين من التوقعات نحسب متوسط ​​الانحراف التربيعي (مسد). إذا قمنا بذلك نجد أنه بالنسبة للمتوسط ​​المتحرك والمتوسط ​​المتحرك الأسي مع ثابت التمهيد 0.3 بشكل عام فإننا نرى أن المتوسط ​​المتحرك لمدة ثلاثة أشهر يبدو أنه يعطي أفضل التوقعات قبل شهر واحد كما أن لديه مسد أقل. وبالتالي نحن نفضل توقعات 20 التي تم إنتاجها من قبل المتوسط ​​المتحرك لمدة ثلاثة أشهر. التنبؤ مثال 1991 امتحان أوغ ويبين الجدول أدناه الطلب على علامة تجارية معينة من جهاز الفاكس في متجر في كل من الأشهر الاثني عشر الماضية. احسب المتوسط ​​المتحرك لمدة أربعة أشهر للأشهر من 4 إلى 12. ما هي توقعاتك للطلب في الشهر 13 تطبيق التمهيد الأسي مع ثابت التمهيد 0.2 لاستخلاص توقعات للطلب في الشهر 13. أي من اثنين من التوقعات في الشهر 13 هل تفضل ولماذا العوامل الأخرى التي لا تؤخذ في الاعتبار في الحسابات أعلاه قد تؤثر على الطلب على جهاز الفاكس في الشهر 13 ويعطى المتوسط ​​المتحرك لمدة أربعة أشهر للأشهر 4 إلى 12 بواسطة: m 4 (23 19 15 12) 4 17،25 م 5 (27 23 19 15) 4 21 م 6 (30 27 23 19) 4 24،75 م 7 (32 30 27 23) 4 28 م 8 (33 32 30 27) 4 30،5 م 9 (37 33 32 30) 4 33 m 10 (41 37 33 32) 4 35.75 m 11 (49 41 37 33) 4 40 m 12 (58 49 41 37) 4 46.25 التوقعات لشهر 13 هي فقط المتوسط ​​المتحرك للشهر قبل ذلك أي المتوسط ​​المتحرك في الشهر 12 م 12 46.25. وبالتالي (كما أننا لا يمكن أن يكون الطلب كسور) توقعات لشهر 13 هو 46. تطبيق تمهيد الأسي مع ثابت تمهيد من 0.2 نحصل على: كما هو الحال قبل توقعات لشهر 13 هو مجرد متوسط ​​للشهر 12 M 12 38.618 39 (كما نحن لا يمكن أن يكون الطلب كسور). لمقارنة اثنين من التوقعات نحسب متوسط ​​الانحراف التربيعي (مسد). إذا قمنا بذلك نجد أنه بالنسبة للمتوسط ​​المتحرك والمتوسط ​​المتحرك الأسي مع ثابت التمهيد 0.2 بشكل عام فإننا نرى أن المتوسط ​​المتحرك لمدة أربعة أشهر يبدو أنه يعطي أفضل التوقعات قبل شهر واحد حيث أن لديه مسد أقل. وبالتالي فإننا نفضل توقعات 46 التي تم إنتاجها من قبل المتوسط ​​المتحرك لمدة أربعة أشهر. التغيرات الموسمية الطلب على الأسعار الإعلان، على حد سواء هذه العلامة التجارية وغيرها من العلامات التجارية الوضع الاقتصادي العام التكنولوجيا الجديدة مثال على التنبؤ 1989 امتحان أوغ ويبين الجدول أدناه الطلب على ماركة معينة من فرن الميكروويف في متجر في كل من الأشهر الاثني عشر الماضية. احسب المتوسط ​​المتحرك لمدة ستة أشهر لكل شهر. ماذا سيكون توقعاتك للطلب في الشهر 13 تطبيق تمهيد الأسي مع ثابت تجانس 0.7 لاستخلاص توقعات للطلب في الشهر 13. أي من اثنين من التوقعات لشهر 13 هل تفضل ولماذا الآن لا يمكننا حساب ستة حتى نحصل على 6 ملاحظات على الأقل - أي أننا لا نستطيع حساب هذا المتوسط ​​إلا من الشهر 6 فصاعدا. ومن هنا يكون لدينا: m 6 (34 32 30 29 31 27) 6 30.50 م 7 (36 34 32 30 29 31) 6 32.00 م 8 (35 36 34 32 30 29) 6 32.67 m 9 (37 35 36 34 32 30) 6 34.00 m 10 (39 37 35 36 34 32) 6 35.50 m 11 (40 39 37 35 36 34) 6 36.83 m 12 (42 40 39 37 35 36) 6 38.17 إن توقعات الشهر 13 هي فقط المتوسط ​​المتحرك ل شهر قبل ذلك أي المتوسط ​​المتحرك لشهر 12 م 12 38.17. وبالتالي (كما أننا لا يمكن أن يكون الطلب كسور) توقعات لشهر 13 هو 38. تطبيق تمهيد الأسي مع ثابت تجانس 0.7 نحصل على: 3 فهم مستويات التنبؤ وطرق يمكنك توليد كل من التفاصيل (بند واحد) التوقعات وملخص (خط الانتاج ) التي تعكس أنماط الطلب على المنتجات. ويقوم النظام بتحليل المبيعات السابقة لحساب التنبؤات باستخدام 12 طريقة للتنبؤ. وتشمل التوقعات معلومات تفصيلية على مستوى البند ومعلومات أعلى مستوى عن فرع أو الشركة ككل. 3.1 معايير تقييم أداء التوقعات اعتمادا على اختيار خيارات المعالجة وعلى الاتجاهات والأنماط في بيانات المبيعات، فإن بعض أساليب التنبؤ تؤدي أداء أفضل من غيرها بالنسبة لمجموعة بيانات تاريخية معينة. قد لا تكون طريقة التنبؤ المناسبة لمنتج واحد مناسبة لمنتج آخر. قد تجد أن طريقة التنبؤ التي توفر نتائج جيدة في مرحلة واحدة من دورة حياة المنتج لا تزال مناسبة طوال دورة الحياة بأكملها. يمكنك الاختيار بين طريقتين لتقييم الأداء الحالي لطرق التنبؤ: النسبة المئوية للدقة (بوا). متوسط ​​الانحراف المطلق (درهم). تتطلب كل من طرق تقييم الأداء هذه بيانات مبيعات سابقة لفترة تحددها. وتسمى هذه الفترة فترة الانتظار أو فترة من أفضل ملاءمة. وتستخدم البيانات في هذه الفترة كأساس للتوصية باستخدام طريقة التنبؤ في وضع توقعات التوقعات التالية. هذه التوصية خاصة بكل منتج ويمكن أن تتغير من جيل واحد إلى آخر. 3.1.1 أفضل ملاءمة يوصى النظام بأفضل توقعات مناسبة من خلال تطبيق أساليب التنبؤ المحددة على تاريخ طلب المبيعات السابق ومقارنة محاكاة التنبؤ بالتاريخ الفعلي. عندما تقوم بتوليد توقعات أفضل مناسبة، يقارن النظام تواريخ أوامر المبيعات الفعلية للتنبؤات لفترة زمنية محددة ويحسب مدى دقة كل طريقة تنبؤ مختلفة توقعت المبيعات. ثم يوصي النظام التنبؤ الأكثر دقة كما الأنسب. ويوضح هذا الرسم البياني أفضل التنبؤات: الشكل 3-1 أفضل التنبؤات المناسبة يستخدم النظام هذا التسلسل من الخطوات لتحديد أفضل ملاءمة: استخدم كل طريقة محددة لمحاكاة توقعات لفترة الاستبقاء. قارن المبيعات الفعلية بالتنبؤات المحاكية لفترة الاستبعاد. احسب بوا أو ماد لتحديد طريقة التنبؤ التي تتطابق بشكل وثيق مع المبيعات الفعلية السابقة. يستخدم النظام إما بوا أو درهم، استنادا إلى خيارات المعالجة التي تحددها. التوصية بتوقعات أفضل من قبل بوا التي هي الأقرب إلى 100 في المئة (أكثر أو أقل) أو درهم الذي هو الأقرب إلى الصفر. 3.2 طرق التنبؤ جد إدواردز إنتربريسون إدارة التنبؤات تستخدم 12 طريقة للتنبؤ الكمي وتشير إلى الطريقة التي توفر أفضل ملاءمة لحالة التنبؤ. يناقش هذا القسم: الطريقة 1: النسبة المئوية عن العام الماضي. الطريقة الثانية: النسبة المئوية المحسوبة خلال العام الماضي. الطريقة الثالثة: السنة الماضية لهذا العام. الطريقة الرابعة: المتوسط ​​المتحرك. الطريقة 5: التقريب الخطي. الطريقة 6: أقل المربعات الانحدار. الطريقة 7: الدرجة الثانية التقريب. الطريقة الثامنة: الطريقة المرنة. الطريقة التاسعة: المتوسط ​​المتحرك المرجح. طريقة 10: خطي تجانس. طريقة 11: الأسي تمهيد. طريقة 12: الأسي تمهيد مع الاتجاه والموسمية. حدد الطريقة التي تريد استخدامها في خيارات المعالجة لبرنامج توليد التوقعات (R34650). معظم هذه الطرق توفر رقابة محدودة. على سبيل المثال، يمكن تحديد الوزن الذي تم وضعه على البيانات التاريخية الحديثة أو النطاق الزمني للبيانات التاريخية المستخدمة في الحسابات من قبلك. وتشير الأمثلة الواردة في الدليل إلى طريقة الحساب لكل طريقة من طرق التنبؤ المتاحة، بالنظر إلى مجموعة متطابقة من البيانات التاريخية. تستخدم أمثلة الطريقة في الدليل جزءا أو كل مجموعات البيانات هذه، وهي بيانات تاريخية من العامين الماضيين. وتذهب التوقعات المتوقعة إلى العام المقبل. هذه البيانات تاريخ المبيعات مستقرة مع الزيادات الموسمية الصغيرة في شهري يوليو وديسمبر. هذا النمط هو سمة من المنتجات الناضجة التي قد تقترب من التقادم. 3.2.1 الطريقة 1: النسبة المئوية في السنة الماضية تستخدم هذه الطريقة صيغة النسبة المئوية خلال السنة الماضية لمضاعفة كل فترة توقع بنسبة الزيادة أو النقصان المحددة المئوية. للتنبؤ الطلب، وهذا الأسلوب يتطلب عدد من فترات لأفضل صالح بالإضافة إلى سنة واحدة من تاريخ المبيعات. هذه الطريقة مفيدة للتنبؤ بالطلب على الأصناف الموسمية مع النمو أو الانخفاض. 3.2.1.1 مثال: الطريقة الأولى: النسبة المئوية خلال السنة الماضية تضاعف صيغة النسبة المئوية من صيغة العام الماضي بيانات المبيعات عن العام السابق بعامل تحدده ثم المشاريع التي ينتج عنها العام التالي. قد تكون هذه الطريقة مفيدة في وضع الميزانيات لمحاكاة تأثير معدل نمو محدد أو عندما يكون تاريخ المبيعات مكونا موسميا هاما. مواصفات التنبؤ: عامل الضرب. على سبيل المثال، حدد 110 في خيار المعالجة لزيادة بيانات سجل مبيعات السنوات السابقة بنسبة 10٪. سجل المبيعات المطلوب: سنة واحدة لحساب التوقعات، بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التنبؤ (فترات أفضل ملاءمة) التي تحددها. هذا الجدول هو التاريخ المستخدم في حساب التنبؤات: توقعات فبراير تساوي 117 مرة 1.1 128.7 مقربة إلى 129. توقعات مارس تساوي 115 مرة 1.1 126.5 مقربة إلى 127. 3.2.2 الطريقة الثانية: النسبة المئوية المحسوبة خلال السنة الماضية تستخدم هذه الطريقة النسبة المحسوبة صيغة العام الماضي لمقارنة المبيعات السابقة لفترات محددة للمبيعات من نفس الفترات من العام السابق. ويحدد النظام نسبة مئوية من الزيادة أو النقصان، ثم يضاعف كل فترة حسب النسبة المئوية لتحديد التوقعات. للتنبؤ الطلب، وهذا الأسلوب يتطلب عدد من فترات من تاريخ النظام المبيعات بالإضافة إلى سنة واحدة من تاريخ المبيعات. وهذه الطريقة مفيدة للتنبؤ بالطلب على المدى القصير على الأصناف الموسمية مع النمو أو الانخفاض. 3.2.2.1 مثال: الطريقة الثانية: النسبة المئوية المحسوبة خلال السنة الماضية النسبة المئوية المحسوبة خلال صيغة السنة الماضية تضاعف بيانات المبيعات عن السنة السابقة بعامل يتم حسابه من قبل النظام، ومن ثم يقوم بتشغيل تلك النتيجة للعام التالي. قد يكون هذا الأسلوب مفيدا في إسقاط تأثير توسيع معدل النمو الأخير للمنتج في العام المقبل مع الحفاظ على نمط موسمي موجود في تاريخ المبيعات. مواصفات التوقعات: مجموعة من تاريخ المبيعات لاستخدامها في حساب معدل النمو. على سبيل المثال، حدد n يساوي 4 في خيار المعالجة لمقارنة سجل المبيعات للفترات الأربع الأخيرة بتلك الفترات الأربع نفسها من العام السابق. استخدام نسبة المحسوبة لجعل الإسقاط للعام المقبل. تاريخ المبيعات المطلوب: سنة واحدة لحساب التوقعات بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التنبؤات (فترات أفضل ملاءمة). هذا الجدول هو التاريخ المستخدم في حساب التوقعات، نظرا ن 4: توقعات فبراير يساوي 117 مرة 0.9766 114.26 مقربة إلى 114. توقعات مارس يساوي 115 مرة 0.9766 112.31 مقربة إلى 112. 3.2.3 الطريقة 3: السنة الماضية لهذا العام يستخدم هذا الأسلوب مبيعات العام الماضي للسنوات المقبلة المتوقع. للتنبؤ الطلب، وهذا الأسلوب يتطلب عدد من فترات أفضل تناسب بالإضافة إلى سنة واحدة من تاريخ النظام المبيعات. هذه الطريقة مفيدة للتنبؤ بالطلب على المنتجات الناضجة مع الطلب على مستوى أو الطلب الموسمي دون اتجاه. 3.2.3.1 مثال: الطريقة الثالثة: السنة الماضية إلى السنة الحالية تقوم صيغة السنة الماضية لهذا العام بنسخ بيانات المبيعات من السنة السابقة إلى السنة التالية. قد تكون هذه الطريقة مفيدة في إعداد الميزانية لمحاكاة المبيعات على المستوى الحالي. المنتج ناضج وليس له أي اتجاه على المدى الطويل، ولكن قد يكون هناك نمط الطلب الموسمي كبير. مواصفات التوقعات: لا شيء. تاريخ المبيعات المطلوب: سنة واحدة لحساب التوقعات بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التنبؤات (فترات أفضل ملاءمة). هذا الجدول هو التاريخ المستخدم في حساب التوقعات: توقعات يناير تساوي يناير من العام الماضي مع قيمة توقعات 128. توقعات فبراير تساوي فبراير من العام الماضي مع قيمة التوقعات 117. توقعات مارس تساوي مارس من العام الماضي مع قيمة التنبؤ 115-4-2-4 الطريقة 4: المتوسط ​​المتحرك تستخدم هذه الطريقة صيغة المتوسط ​​المتحرك لمتوسط ​​العدد المحدد للفترات لعرض الفترة التالية. يجب عليك إعادة حسابها في كثير من الأحيان (شهريا أو على الأقل ربع سنوي) لتعكس تغيير مستوى الطلب. للتنبؤ الطلب، وهذا الأسلوب يتطلب عدد من فترات أفضل تناسب بالإضافة إلى عدد من فترات من تاريخ النظام المبيعات. هذه الطريقة مفيدة للتنبؤ الطلب على المنتجات الناضجة دون الاتجاه. 3.2.4.1 مثال: الطريقة 4: متوسط ​​متوسط ​​الحركة المتحرك (ما) هو طريقة شعبية لتحديد متوسط ​​تاريخ المبيعات الأخير لتحديد إسقاط على المدى القصير. طريقة التنبؤ ما تتخلف عن الاتجاهات. يحدث التحيز التنبؤي والأخطاء المنهجية عندما يظهر تاريخ مبيعات المنتجات اتجاها قويا أو أنماطا موسمية. هذا الأسلوب يعمل بشكل أفضل للتنبؤات قصيرة المدى من المنتجات الناضجة من المنتجات التي هي في مراحل النمو أو التقادم من دورة الحياة. مواصفات التنبؤ: n يساوي عدد الفترات من تاريخ المبيعات لاستخدامها في حساب التوقعات. على سبيل المثال، حدد n 4 في خيار المعالجة لاستخدام أحدث أربع فترات كأساس للتوقعات في الفترة الزمنية التالية. قيمة كبيرة ل n (مثل 12) يتطلب المزيد من المبيعات التاريخ. فإنه يؤدي إلى توقعات مستقرة، ولكن بطيئة في الاعتراف التحولات في مستوى المبيعات. على العكس من ذلك، فإن قيمة صغيرة ل n (مثل 3) هي أسرع للرد على التحولات في مستوى المبيعات، ولكن التوقعات قد تتقلب على نطاق واسع بحيث أن الإنتاج لا يمكن أن تستجيب لهذه الاختلافات. سجل المبيعات المطلوب: n بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التوقعات (فترات تناسب أفضل). هذا الجدول هو التاريخ المستخدم في حساب التوقعات: توقعات فبراير تساوي (114 119 137 125) 4 123.75 مقربة إلى 124. توقعات مارس تساوي (119 137 125 124) 4 126.25 مقربة إلى 126. 3.2.5 الطريقة 5: تقريب خطي هذه الطريقة يستخدم صيغة التقريب الخطي لحساب اتجاه من عدد الفترات من تاريخ أمر المبيعات ولعرض هذا الاتجاه إلى التوقعات. يجب عليك إعادة حساب الاتجاه الشهري للكشف عن التغيرات في الاتجاهات. يتطلب هذا الأسلوب عدد الفترات من أفضل تناسب بالإضافة إلى عدد من فترات محددة من تاريخ أمر المبيعات. وهذه الطريقة مفيدة للتنبؤ بالطلب على منتجات جديدة أو منتجات ذات اتجاهات إيجابية أو سلبية متسقة لا ترجع إلى التقلبات الموسمية. 3.2.5.1 مثال: الطريقة 5: تقريب خطي يحسب التقريب الخطي اتجاه يستند إلى نقطتي بيانات تاريخ المبيعات. وتحدد هاتان النقطتان خط اتجاه مستقيمي متوقع في المستقبل. استخدم هذه الطريقة بحذر لأن التوقعات طويلة المدى تستفيد من التغييرات الصغيرة في نقطتي بيانات فقط. مواصفات التنبؤ: n يساوي نقطة البيانات في تاريخ المبيعات الذي يقارن إلى أحدث نقطة البيانات لتحديد الاتجاه. على سبيل المثال، حدد n 4 لاستخدام الفرق بين ديسمبر (أحدث البيانات) وأغسطس (أربع فترات قبل ديسمبر) كأساس لحساب الاتجاه. الحد الأدنى المطلوب لسجل المبيعات: n زائد 1 بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التنبؤات (الفترات الأكثر ملائمة). هذا الجدول هو التاريخ المستخدم في حساب التوقعات: توقعات كانون الثاني / يناير من العام الماضي 1 (الاتجاه) التي تساوي 137 (1 مرة 2) 139. توقعات شباط / فبراير من العام الماضي 1 (الاتجاه) التي تساوي 137 (2 مرة 2) 141. توقعات آذار / مارس من العام الماضي 1 (الاتجاه) تساوي 137 (3 مرات 2) 143. 3.2.6 الطريقة 6: انحدار المربعات الصغرى تستمد طريقة انحدار المربعات الصغرى (لسر) معادلة تصف علاقة خط مستقيم بين بيانات المبيعات التاريخية و مرور الوقت. لسر يناسب خط إلى مجموعة مختارة من البيانات بحيث يتم تقليل مجموع مربعات الاختلافات بين نقاط بيانات المبيعات الفعلية وخط الانحدار. التوقعات هي توقعات هذا الخط المستقيم في المستقبل. تتطلب هذه الطريقة تاريخ بيانات المبيعات للفترة التي يمثلها عدد الفترات الأكثر ملاءمة بالإضافة إلى العدد المحدد لفترات البيانات التاريخية. الحد الأدنى المطلوب هو نقطتي بيانات تاريخيتين. هذه الطريقة مفيدة للتنبؤ بالطلب عند وجود اتجاه خطي في البيانات. 3.2.6.1 مثال: الطريقة 6: انحدار المربعات الصغرى الانحدار الخطي، أو انحدار المربعات الصغرى (لسر)، هي الطريقة الأكثر شعبية لتحديد اتجاه خطي في بيانات المبيعات التاريخية. وتحسب الطريقة القيمتين a و b المطلوب استخدامها في الصيغة: تصف هذه المعادلة خطا مستقيما، حيث تمثل Y المبيعات وتمثل X الوقت. الانحدار الخطي بطيء في التعرف على نقاط التحول والتحولات وظيفة خطوة في الطلب. الانحدار الخطي يناسب خط مستقيم على البيانات، حتى عندما تكون البيانات موسمية أو أفضل وصفها منحنى. عندما تتبع بيانات تاريخ المبيعات منحنى أو لديها نمط موسمي قوي، يحدث التحيز المتوقع والأخطاء المنهجية. مواصفات التوقعات: n تساوي فترات تاريخ المبيعات التي سيتم استخدامها في حساب قيم a و b. على سبيل المثال، حدد n 4 لاستخدام السجل من سبتمبر إلى ديسمبر كأساس للحسابات. وعندما تكون البيانات متاحة، عادة ما تستخدم أكبر n (مثل n 24). يحدد لسر خطا لعدد قليل من نقطتي بيانات. على سبيل المثال، تم اختيار قيمة صغيرة ل n (n 4) لتقليل الحسابات اليدوية المطلوبة للتحقق من النتائج. الحد الأدنى المطلوب من تاريخ المبيعات: عدد الفترات الزمنية بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التوقعات (الفترات الأكثر ملائمة). هذا الجدول هو التاريخ المستخدم في حساب التنبؤات: توقعات مارس تساوي 119.5 (7 مرات 2.3) 135.6 مقربة إلى 136. 3.2.7 الطريقة 7: الدرجة الثانية التقريب لعرض التوقعات، يستخدم هذا الأسلوب صيغة تقريب الدرجة الثانية لرسم منحنى التي تقوم على عدد من فترات من تاريخ المبيعات. يتطلب هذا الأسلوب عدد من فترات أفضل تناسب بالإضافة إلى عدد من فترات من أجل ترتيب المبيعات مرات ثلاثة. هذه الطريقة ليست مفيدة للتنبؤ بالطلب على المدى الطويل. 3.2.7.1 مثال: الطريقة 7: الدرجة الثانية التقريب يحدد الانحدار الخطي القيم ل a و b في صيغة التنبؤ Y a b X بهدف تركيب خط مستقيم على بيانات تاريخ المبيعات. الدرجة الثانية تقريب، ولكن هذه الطريقة تحدد القيم ل a و b و c في صيغة التنبؤ هذه: Y a b x c X 2 الهدف من هذا الأسلوب هو ملاءمة منحنى لبيانات تاريخ المبيعات. هذه الطريقة مفيدة عندما يكون المنتج في مرحلة الانتقال بين مراحل دورة الحياة. على سبيل المثال، عندما يتحرك منتج جديد من مرحلة مقدمة إلى مراحل النمو، قد يتسارع اتجاه المبيعات. بسبب مصطلح الترتيب الثاني، يمكن التنبؤ بسرعة الاقتراب اللانهاية أو انخفاض إلى الصفر (اعتمادا على ما إذا كان معامل ج إيجابي أو سلبي). هذه الطريقة مفيدة فقط على المدى القصير. مواصفات التنبؤ: الصيغة تجد a، b، و c لتناسب منحنى إلى بالضبط ثلاث نقاط. يمكنك تحديد n، وعدد الفترات الزمنية للبيانات لتتراكم في كل من النقاط الثلاث. في هذا المثال، n 3. يتم دمج بيانات المبيعات الفعلية للفترة من أبريل إلى يونيو في النقطة الأولى، Q1. يوليو إلى سبتمبر تضاف معا لخلق Q2، وأكتوبر خلال ديسمبر المبلغ إلى Q3. تم تركيب المنحنى على القيم الثلاثة Q1 و Q2 و Q3. تاريخ المبيعات المطلوب: 3 مرات n فترات لحساب التوقعات بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التنبؤ (فترات من أفضل تناسب). هذا الجدول هو التاريخ المستخدم في حساب التوقعات: Q0 (يناير) (فبراير) (مارس) Q1 (أبريل) (مايو) (يونيو) الذي يساوي 125 122 137 384 Q2 (يوليو) (أغسطس) (سبتمبر) الذي يساوي 140 129 131 400 Q3 (أكتوبر) (نوفمبر) (ديسمبر) الذي يساوي 114 119 137 370 تتضمن الخطوة التالية حساب المعاملات الثلاثة a و b و c لاستخدامها في صيغة التنبؤ Y أب x c X 2. يتم عرض Q1 و Q2 و Q3 على الرسم البياني، حيث يتم رسم الوقت على المحور الأفقي. Q1 يمثل إجمالي المبيعات التاريخية لشهر أبريل ومايو ويونيو ويتم رسمها في X 1 Q2 يتوافق مع يوليو حتى سبتمبر Q3 يتوافق من أكتوبر حتى ديسمبر و Q4 يمثل يناير حتى مارس. ويوضح هذا الرسم تخطيطات Q1 و Q2 و Q3 و Q4 للحصول على تقريب من الدرجة الثانية: الشكل 3-2 التآمر Q1 و Q2 و Q3 و Q4 للحصول على تقريب من الدرجة الثانية ثلاث معادلات تصف النقاط الثلاث على الرسم البياني: (1) Q1 بكس سك 2 حيث X 1 (Q1 أبك) (2) Q2 a بكس سك 2 حيث X 2 (Q2 a 2b 4c) (3) Q3 a بكس سك 2 حيث X 3 (Q3 a 3b 9c) حل المعادلات الثلاث في وقت واحد (1) من المعادلة 2 (2) وحل b: (2) نداش (1) Q2 نداش Q1 b 3c b (Q2 نداش Q1) ندش 3c استبدال هذه المعادلة ل (3) Q3 3 (Q2 نداش Q1) نداش 3C 9C Q3 نداش 3 (Q2 نداش Q1) وأخيرا، استبدل هذه المعادلات ب و b في المعادلة (1): (1) Q3 نداش (Q2 نداش Q1) (Q2 نداش Q1) نداش 3c ج Q1 ج (Q3 نداش Q2) (Q1 نداش Q2) 2 طريقة التقريب الدرجة الثانية تحسب a و b و c على النحو التالي: Q3 نداش 3 (Q2 نداش Q1 ) 370 ندش 3 (400 ندش 384) 370 ندش 3 (16) 322 ب (Q2 نداش Q1) ndash3c (400 ندا ش 384) نداش (3 مرات ndash23) 16 69 85 ج (Q3 نداش Q2) (Q1 نداش Q2) 2 (370 نداش 400) (384 نداش 400) 2 ndash23 هذا هو حساب من الدرجة الثانية تقدير تقريبي: Y بكس سك 2 322 85X (ndash23) (X 2) عندما يكون X 4، Q4 322 340 ندش 368 294. تبلغ التوقعات 294 3 98 لكل فترة. عندما يكون X 5، Q5 322 425 نداش 575 172. وتقدر التوقعات 172 3 58.33 مقربة إلى 57 لكل فترة. عندما X 6، Q6 322 510 نداش 828 4. توقعات يساوي 4 3 1.33 تقريب إلى 1 في الفترة. هذا هو التوقعات للعام المقبل، السنة الماضية إلى هذا العام: 3.2.8 الطريقة 8: طريقة مرنة تمكنك هذه الطريقة لتحديد أفضل عدد مناسب من فترات من تاريخ النظام المبيعات التي تبدأ قبل أشهر من تاريخ بدء التنبؤ، وإلى تطبيق عامل زيادة أو نقصان في النسبة المئوية لتعديل التوقعات. هذه الطريقة مشابهة الأسلوب 1، النسبة المئوية خلال العام الماضي، إلا أنه يمكنك تحديد عدد الفترات التي تستخدمها كقاعدة. اعتمادا على ما تحدده n، تتطلب هذه الطريقة فترات تناسب أفضل بالإضافة إلى عدد فترات بيانات المبيعات المشار إليها. وهذه الطريقة مفيدة للتنبؤ بالطلب على الاتجاه المخطط. 3.2.8.1 مثال: الطريقة 8: الطريقة المرنة الأسلوب المرن (النسبة المئوية خلال الأشهر السابقة) يشبه الأسلوب 1، النسبة المئوية خلال العام الماضي. كلتا الطريقتين تضاعف بيانات المبيعات من فترة زمنية سابقة بعامل محدد من قبلك، ومن ثم عرض هذه النتيجة في المستقبل. في طريقة النسبة المئوية خلال العام الماضي، يستند الإسقاط إلى بيانات من نفس الفترة الزمنية في العام السابق. يمكنك أيضا استخدام طريقة مرنة لتحديد فترة زمنية، بخلاف نفس الفترة من العام الماضي، لاستخدامها كأساس للحسابات. عامل الضرب. على سبيل المثال، حدد 110 في خيار المعالجة لزيادة بيانات سجل المبيعات السابقة بنسبة 10٪. فترة الأساس. علی سبیل المثال، یسبب الرقم 4 التنبؤ الأول علی أساس بیانات المبیعات في شھر سبتمبر من العام الماضي. الحد الأدنى المطلوب من تاريخ المبيعات: عدد الفترات التي تعود إلى فترة الأساس بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التوقعات (فترات أفضل ملاءمة). هذا الجدول هو التاريخ المستخدم في حساب التوقعات: 3.2.9 الطريقة 9: المتوسط ​​المتحرك المتوسط ​​يشبه متوسط ​​المتوسط ​​المتحرك المتوسط ​​الصيغة 4، صيغة المتوسط ​​المتحرك، لأنه متوسط ​​سجل مبيعات الأشهر السابقة لعرض تاريخ مبيعات الأشهر التالية. ومع ذلك، مع هذه الصيغة يمكنك تعيين الأوزان لكل من الفترات السابقة. تتطلب هذه الطريقة عدد الفترات المرجحة المختارة بالإضافة إلى عدد الفترات التي تناسب البيانات. على غرار المتوسط ​​المتحرك، هذه الطريقة متخلفة عن اتجاهات الطلب، لذلك لا يوصى باستخدام هذه الطريقة للمنتجات ذات الاتجاهات القوية أو الموسمية. هذا الأسلوب هو مفيد للتنبؤ الطلب على المنتجات الناضجة مع الطلب الذي هو مستوى نسبيا. 3.2.9.1 مثال: الطريقة 9: المتوسط ​​المتحرك المتوسط ​​يشبه أسلوب المتوسط ​​المتحرك المتوسط ​​(ويم) الطريقة 4، المتوسط ​​المتحرك (ما). ومع ذلك، يمكنك تعيين أوزان غير متكافئة للبيانات التاريخية عند استخدام وما. وتحسب الطريقة المتوسط ​​المرجح لتاريخ المبيعات الأخير للوصول إلى إسقاط على المدى القصير. عادة ما يتم تعيين بيانات أكثر حداثة وزنا أكبر من البيانات القديمة، لذلك وما هو أكثر استجابة للتحولات في مستوى المبيعات. ومع ذلك، يحدث التحيز التنبؤي والأخطاء المنهجية عندما يظهر تاريخ مبيعات المنتجات اتجاهات قوية أو أنماط موسمية. هذا الأسلوب يعمل بشكل أفضل للتنبؤات قصيرة المدى من المنتجات الناضجة من المنتجات في مراحل النمو أو التقادم من دورة الحياة. عدد الفترات من تاريخ المبيعات (ن) لاستخدامها في حساب التوقعات. على سبيل المثال، حدد n 4 في خيار المعالجة لاستخدام أحدث أربع فترات كأساس للتوقعات في الفترة الزمنية التالية. قيمة كبيرة ل n (مثل 12) يتطلب المزيد من المبيعات التاريخ. هذه القيمة تؤدي إلى توقعات مستقرة، ولكن بطيئة الاعتراف التحولات في مستوى المبيعات. وعلى العكس من ذلك، فإن قيمة صغيرة ل n (مثل 3) تستجيب بسرعة أكبر للتحولات في مستوى المبيعات، ولكن التوقعات قد تتقلب على نطاق واسع بحيث لا يمكن للإنتاج أن يستجيب للتغيرات. يجب ألا يتجاوز العدد الإجمالي للفترات لخيار المعالجة rdquo14 - الفترات المرسلة إلى إينلوديدردو 12 شهرا. الوزن الذي تم تعيينه لكل من فترات البيانات التاريخية. يجب أن تكون الأوزان المخصصة 1.00. على سبيل المثال، عندما ن 4، تعيين أوزان 0.50، 0.25، 0.15، 0.10 مع أحدث البيانات التي تتلقى أكبر قدر من الوزن. الحد الأدنى المطلوب لسجل المبيعات: n بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التوقعات (فترات أفضل ملاءمة). هذا الجدول هو التاريخ المستخدم في حساب التنبؤات: توقعات يناير تساوي (131 مرة 0.10) (114 مرة 0.15) (119 مرة 0.25) (137 مرة 0.50) (0.10 0.15 0.25 0.50) 128.45 مقربة إلى 128. توقعات فبراير تساوي (114 مرة 0.12) (119 مرة 0.15) (137 مرة 0.25) (128 مرة 0.50) 1 127.5 مقربة إلى 128. توقعات مارس تساوي (119 مرة 0.10) (137 مرة 0.15) (128 مرة 0.25) (128 مرة 0.50) 1 128.45 128. 10-2-10 الطريقة 10: التجانس الخطي تحسب هذه الطريقة المتوسط ​​المرجح لبيانات المبيعات السابقة. في الحساب، يستخدم هذا الأسلوب عدد فترات تاريخ طلب المبيعات (من 1 إلى 12) المشار إليه في خيار المعالجة. يستخدم النظام تطور رياضي ل وزن البيانات في نطاق من الأول (أقل الوزن) إلى النهائي (معظم الوزن). ثم يقوم النظام بتطوير هذه المعلومات لكل فترة في التوقعات. تتطلب هذه الطريقة أشهر مناسبة بالإضافة إلى سجل أوامر المبيعات لعدد الفترات المحددة في خيار المعالجة. 3.2.10.1 مثال: الطريقة 10: تمهيد خطي تشبه هذه الطريقة الطريقة 9، وما. However, instead of arbitrarily assigning weights to the historical data, a formula is used to assign weights that decline linearly and sum to 1.00. The method then calculates a weighted average of recent sales history to arrive at a projection for the short term. Like all linear moving average forecasting techniques, forecast bias and systematic errors occur when the product sales history exhibits strong trend or seasonal patterns. This method works better for short range forecasts of mature products than for products in the growth or obsolescence stages of the life cycle. n equals the number of periods of sales history to use in the forecast calculation. For example, specify n equals 4 in the processing option to use the most recent four periods as the basis for the projection into the next time period. The system automatically assigns the weights to the historical data that decline linearly and sum to 1.00. For example, when n equals 4, the system assigns weights of 0.4, 0.3, 0.2, and 0.1, with the most recent data receiving the greatest weight. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.11 Method 11: Exponential Smoothing This method calculates a smoothed average, which becomes an estimate representing the general level of sales over the selected historical data periods. This method requires sales data history for the time period that is represented by the number of periods best fit plus the number of historical data periods that are specified. The minimum requirement is two historical data periods. This method is useful to forecast demand when no linear trend is in the data. 3.2.11.1 Example: Method 11: Exponential Smoothing This method is similar to Method 10, Linear Smoothing. In Linear Smoothing, the system assigns weights that decline linearly to the historical data. In Exponential Smoothing, the system assigns weights that exponentially decay. The equation for Exponential Smoothing forecasting is: Forecast alpha (Previous Actual Sales) (1 ndashalpha) (Previous Forecast) The forecast is a weighted average of the actual sales from the previous period and the forecast from the previous period. Alpha is the weight that is applied to the actual sales for the previous period. (1 ndash alpha) is the weight that is applied to the forecast for the previous period. Values for alpha range from 0 to 1 and usually fall between 0.1 and 0.4. The sum of the weights is 1.00 (alpha (1 ndash alpha) 1). You should assign a value for the smoothing constant, alpha. If you do not assign a value for the smoothing constant, the system calculates an assumed value that is based on the number of periods of sales history that is specified in the processing option. alpha equals the smoothing constant that is used to calculate the smoothed average for the general level or magnitude of sales. Values for alpha range from 0 to 1. n equals the range of sales history data to include in the calculations. Generally, one year of sales history data is sufficient to estimate the general level of sales. For this example, a small value for n (n 4) was chosen to reduce the manual calculations that are required to verify the results. Exponential Smoothing can generate a forecast that is based on as little as one historical data point. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.12 Method 12: Exponential Smoothing with Trend and Seasonality This method calculates a trend, a seasonal index, and an exponentially smoothed average from the sales order history. The system then applies a projection of the trend to the forecast and adjusts for the seasonal index. This method requires the number of periods best fit plus two years of sales data, and is useful for items that have both trend and seasonality in the forecast. You can enter the alpha and beta factor, or have the system calculate them. Alpha and beta factors are the smoothing constant that the system uses to calculate the smoothed average for the general level or magnitude of sales (alpha) and the trend component of the forecast (beta). 3.2.12.1 Example: Method 12: Exponential Smoothing with Trend and Seasonality This method is similar to Method 11, Exponential Smoothing, in that a smoothed average is calculated. However, Method 12 also includes a term in the forecasting equation to calculate a smoothed trend. The forecast is composed of a smoothed average that is adjusted for a linear trend. When specified in the processing option, the forecast is also adjusted for seasonality. Alpha equals the smoothing constant that is used in calculating the smoothed average for the general level or magnitude of sales. Values for alpha range from 0 to 1. Beta equals the smoothing constant that is used in calculating the smoothed average for the trend component of the forecast. Values for beta range from 0 to 1. Whether a seasonal index is applied to the forecast. Alpha and beta are independent of one another. They do not have to sum to 1.0. Minimum required sales history: One year plus the number of time periods that are required to evaluate the forecast performance (periods of best fit). When two or more years of historical data is available, the system uses two years of data in the calculations. Method 12 uses two Exponential Smoothing equations and one simple average to calculate a smoothed average, a smoothed trend, and a simple average seasonal index. An exponentially smoothed average: An exponentially smoothed trend: A simple average seasonal index: Figure 3-3 Simple Average Seasonal Index The forecast is then calculated by using the results of the three equations: L is the length of seasonality (L equals 12 months or 52 weeks). t is the current time period. m is the number of time periods into the future of the forecast. S is the multiplicative seasonal adjustment factor that is indexed to the appropriate time period. This table lists history used in the forecast calculation: This section provides an overview of Forecast Evaluations and discusses: You can select forecasting methods to generate as many as 12 forecasts for each product. Each forecasting method might create a slightly different projection. When thousands of products are forecast, a subjective decision is impractical regarding which forecast to use in the plans for each product. The system automatically evaluates performance for each forecasting method that you select and for each product that you forecast. You can select between two performance criteria: MAD and POA. MAD is a measure of forecast error. POA is a measure of forecast bias. Both of these performance evaluation techniques require actual sales history data for a period specified by you. The period of recent history used for evaluation is called a holdout period or period of best fit. To measure the performance of a forecasting method, the system: Uses the forecast formulas to simulate a forecast for the historical holdout period. Makes a comparison between the actual sales data and the simulated forecast for the holdout period. When you select multiple forecast methods, this same process occurs for each method. Multiple forecasts are calculated for the holdout period and compared to the known sales history for that same period. The forecasting method that produces the best match (best fit) between the forecast and the actual sales during the holdout period is recommended for use in the plans. This recommendation is specific to each product and might change each time that you generate a forecast. 3.3.1 Mean Absolute Deviation Mean Absolute Deviation (MAD) is the mean (or average) of the absolute values (or magnitude) of the deviations (or errors) between actual and forecast data. MAD is a measure of the average magnitude of errors to expect, given a forecasting method and data history. Because absolute values are used in the calculation, positive errors do not cancel out negative errors. When comparing several forecasting methods, the one with the smallest MAD is the most reliable for that product for that holdout period. When the forecast is unbiased and errors are normally distributed, a simple mathematical relationship exists between MAD and two other common measures of distribution, which are standard deviation and Mean Squared Error. For example: MAD (Sigma (Actual) ndash (Forecast)) n Standard Deviation, (sigma) cong 1.25 MAD Mean Squared Error cong ndashsigma2 This example indicates the calculation of MAD for two of the forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.1.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: Mean Absolute Deviation equals (2 1 20 10 14) 5 9.4. Based on these two choices, the Moving Average, n 4 method is recommended because it has the smaller MAD, 9.4, for the given holdout period. 3.3.2 Percent of Accuracy Percent of Accuracy (POA) is a measure of forecast bias. When forecasts are consistently too high, inventories accumulate and inventory costs rise. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. In services, the magnitude of forecast errors is usually more important than is forecast bias. POA (SigmaForecast sales during holdout period) (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way.

No comments:

Post a Comment